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Abstract



Differential Quadrature Method proposed
here can be used to solve boundary-value
and initial-value differential equations with
a linear or nonlinear nature.



Unlike the classic Differential
Quadrature Method (DQM), the newly

proposed Differential Quadrature
chooses the function values and some
derivatives wherever necessary as
Independent variables.



The 0-type grid arrangement

used in the classic DQM is exempt
at present work while the

boundary conditions are applied
exactly.



Most importantly, the weighting
coefficients can be obtained
explicitly using the proposed
procedures.



Introduction



The Differential Quadrature Method
(DQM) was proposed by Bellman
and Casti (1971) and has been
employed in the solution of solid
mechanics problems by Bert

and Malik (1996).



A 0-point technique has been employed in the
DQM's application to boundary value

differential equations with multiple conditions.
But the initial-value differential quadrature

method for structural dynamics has not been
reported until now.



The classic Differential
Quadrature Method (DQM)
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Consider a one-dimensional variable

v (X)

and let v=w(Xx;) be the function
values specified in a finite set of N
discrete points x(i=1, 2, ... ,N)
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Essential basis of the DQM

Let the value of the function derivative be
expressed as a linearly weighted sum of the
function values.




The weighting coefficients may be
determined by some appropriate functional
approximations.

The approximate functions are referred to
as test functions.
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Although there can be many choices of

the test functions, a convenient and most
commonly used choice in one-dimensional

problems is the Lagrangian interpolation shape
functions 1,(x) where:
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Note that in the classic DQ method
the number of test functions is equal
to the number of the sampling points.
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The polynomial-test-function-based

weighting coefficients




1) The accuracy of differential quadrature solution
depends on the accuracy of the weighting
coefficients.

2) Considering the Lagrangian polynomial as the
test function the weighting coefficients of rth-
order derivatives will be :

(r) dr \ ;e -
Aij :@lj(x,-) (i,j=1,2,..., N) (3)
where:

| P(x) . S |
li(x) = (1) D9x) = (X — X ):

! (x - xj)q')‘l“(xj) ,,1,_[1

- 1 (x; N
(!{)l"lJ(xj) — : (::i(;j) — H (x} Xm)

m=1:m+j

x;'s are the locations of the grid points & N is the

number of sampling points.
17
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Using Egs. (1), (2), and (3) based on Lagrangian
interpolation test function the weighting coefficients will be
derived as below:

) dli(xi) o' (x;)

’ dx  (x; — x;)P"V (x7)
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Normalizing sample points
domain



A convenient and natural choice for the sampling points is
that of the equally spaced sampling points. These are given
In the normalized coordinate [0,1] by :
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But the Differential Quadrature solutions usually deliver
more accurate results with unequally spaced sampling
points. A well accepted kind of sampling points using
zeros of the orthogonal polynomials in the DQM is the
so-called Gauss-Lobatto-Chebyshev points:

1 —cos[(i— 1)n/(N — 1)
Xi = 7

-~ (i=1,2,..., N) (6)
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Recent developments
of the DQM



1) Usually, the fourth-order differential equations in
structural mechanics such as beam and plate's
displacement, buckling and free-vibration analysis have
two boundary equations at each boundary.

2)Two conditions at the same point provoke a big and
real challenge for the classic Differential Quadrature
Method, because in the classic DQM we have only one
guadrature equation at one point but two boundary
equations are to be implemented.
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Therefore, Bert and Malik (1996), Jang et al.
(1989),Kang et al. (1995), Kukreti et al. (1992)
and Striz et al.(1988) proposed the o-type grid
arrangements, that is, besides the two boundary
points, two additional adjacent points with an
order of 10 ->distance to the boundary points
were also treated as boundary points. Therefore,
there are two boundary points at each boundary
corresponding to their two respective boundary
conditions.

24



O-type grid arrangement deficiencies :

1) In solid dynamics problems, one has two initial conditions at
the initial time, that is the initial displacement and initial velocity.
The same problems (two conditions at the same point) were
also encountered. Therefore no one

paper has appeared about solid dynamics problems solved by
the classic DQM.

2) Although the o-type grid arrangements work well for some
circumstances, this type of boundary grid arrangement is not
mathematically suitable and will sometimes cause ill-
conditioned problems.

25
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The improved proposed
Differential Quadrature Method



This paper will propose an Improved Differential Quadrature
Method using Hermite interpolation functions to apply the
multiple boundary or initial conditions exactly without using the o-
point technique with unequally spaced sampling points .

The independent variables are chosen to be the

function value and its derivatives of possible lowest
order wherever necessary.
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Consider a one-dimensional variable /(x)

iIn domain of x,< x <x, and divide the domain by N
points x, (1=1,2,...,N).

Let n, denote the number of equations corresponding to
the point x..

Using Hermite interpolation functions:

N

Y (x) = Z(hjo(x)l//}o) + hjl(x)l//j('l) + ”"jw_,-—u(x)‘/’ft'”t”)

j=1

28



Properties of Hermite interpolation shape
functions when x = x;

hy (%) m () B 1) (%)

hijo(x;) 1 hi1 (x;) o ... Rjn;—1) (%) 0
hy (x;) 0 hy (x;) . B 1) (%) 0
...... 0 0 0
hy " (x)) 0 ' (x) o .. hj(ﬁ(”,j’_ () 1
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N M
= 2 (o™ + "t (") = Iy (x) Ui

j=1

{Uk} — {Ul, Uz, cee s UM}

EEWORORE.
PO g gy,

{h} = {hy by, ... hy )
= {hio(x), h11(x), ... =1y (%), - -+ o (%),

th (JC), ) hN(nN—l) (x) }T




Expression of the newly proposed
DQM

Where Ef,:) are called the weighting coefficients of
the rth-order derivative of the function at point x..

(r) (r) /

l

(r) (r) (r)
— {hlo (x,). hll (xl) ----- hi"ll—l](xi) -----
(r) / (r) , (r)
Py (%), By (i), - - By (%0) }
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For points with more than one equation such as single span
beam's end points, the more than one independent
variable is introduced to implement the same number of

equations. Then the deficiencies of the o-type grid
arrangements are eliminated, and the boundary conditions

are applied directly.
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In conclusion, the calssic DQM has only the
function values as the independent variables.
Therefore at one point only one differential
guadrature analog can be implemented.

But in the newly proposed Differential Quadrature
one has the function value and its derivatives
wherever necessary as the independent variables.

Thus at one point, more than one differential
guadrature analog can be implemented in the
proposed Differential Quadrature. The resulting
weighting coefficient of the classic DQM is a
matrix of N x N. But the resulting weighting
coefficient of the proposed Differential Quadrature
18 a matrix of N x M.



Single-span Bernoulli-Euler
Beam's Buckling Analysis

The governlng equation of single-span Bernoulli-
Euler beam's buckling problem is :

bw_ Bdw_ c [0,L] = [0, 1]
dxt  Elde = BAEE

where w is the displacement function in the y direction,
E and | denote the modulus of elasticity and

principal moment of inertia about the z-axis, respectively.

P is the compressive axial load.
34



The single-span Bernoulli-Euler beam has four
boundary conditions, two at each end. The beam is
divided into N-1 sections using nonequally spaced
points. The boundary conditions are usually the
following forms in the buckling analysis:

w; =0; w.’ =0:; EIw'”

I 1

= 0:
Elwi) =0  (i=1 or N)

35



In this example, there are two boundary points x.
and x,. At point x, there are two boundary
conditions and thus two independent variables
w1 and w}" .At point x,, there are also two
boundary conditions and then two independent

variables wn and Wf»‘é) .
Therefore:
n, = nN =2,
Np=n3=---=ny_1 =1,
M = Zil n; =N+2

36



Differential Quadrature expression

j=1
where

(B} = (hig (x). 5 ()RS5 ). ... W ), ) () )

= (W (%), B (%), . . B (%2, B (x:))
{U]} = {Wl, ng), W2, o« s u WN, WS)}

— {Ula U27° <oy UN+2}
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Interpolation shape function

Since we have two boundary conditions at the
first point, two interpolation functions h,,(x) &
n,,(x) are defined for this point as follows:

hlo(X) = (a1x2 -} blx -+ Cl)ll (X)

where h,o(x) has the following
properties:

ho(x;) =0,  (j=2.3,...,N)

P



Notice that L(xn) =0, i(x;) =1

(X2 + bix) + )l (x1) = arx? +bix) + ¢ =1

j < (2a1x1 + bl)ll (xl) A (alx% == blxl -+ cl)lgl)(xl) =1
| (2ayxy + b))k (xy) + (%% + byxy + )1 (xy) = 0
N 4
a, = 1 - I (x1)
(x1 — xn)° (%1 —xN)
1
by = —ay(x1 + xn)

2x, + (%1 +xN)l§”(x1)

B JCN)2 (x1 — xn)

39



hy (x)= (anx’ 4 bux +cyy) L(x)
The hi(x) should have the following properties:

by (x1) = 1: i) (xy) = 0;
hu(x]-) — 0, (] — 12 .o N)

Where

40



th (X) — (asz A bjx S cj)lj(x)
j=2,3,....N—1)

Where its properties are as follows:
1 1
hjg(Xj) = 1; h}o)(xl) = O; h}o)(xN) = 0; hjo(x,-) =0

1

x]? — xi(x1 + xn) + X1%N

j bj _ —(xl =i xN)

x]‘?' — xj(x1 + xn) + X1XN

aj=

X1XN

sz =%l XN ) N

Cj—

41



hno(x) = (aNx2 + byx + cN)lN(x)

Where its properties are as follows:

hyo(xy) = 15 hyg(xy) = 0: hyg(x1) = 0:
hvo(x) =0  (i=1,2,...,N —1)

-1 1D ()
A= (x; — xN)2 * (%1 — xn)
by = & ——lxN) — ay(x; + xy)
j _ 2xy (%1 + xN)lg)(xN)

(x1 — xn)° (%1 — xy)

cn=1-— ain, = bNxN

~(x1 = 2xn)x) xlxnlﬁ)(va)

42 (x1 — xn)° (%1 — xn)



hyy (X) — (aN1x2 + byi1x + CNl)lN(X)

Where its properties are as follows:

Al (xn) = 13 By (x1) = 0;
hni(x;) = 0, j=1,2,...,N)

—1 X1 + XN

> aN1 — ; le — ;
X1 — XN X1 — XN

43

CN1 —

—X1XN

X1 — XN



Explicit weighting coefficients

&W_wa_
dx* EIldx?

0 xclor=[01]

N+2

w® (x;)= D E'Y

=1




Now the differential quadrature analog of
the beam governing equation is:

N+2 (@ N+2 @)
D _ES U~ 2 Ej'U =0
j=1 j=1 ). = P/EI

(i=2,3,....N—1)

The differential quadrature analogs of the boundary
conditions are :

N+2
wi=0; wi =0; EIY EU;=0;
j=1
N+2
EIY EJ)U;=0 (i=1orN)
j:

45



o sallion )
0 0 U
"‘[[c[zd]z,J [cgd]d]]{iuﬁ}:o

Where the subscript b indicates the grid points used
for writing the quadrature analog of the boundary
conditions and the subscript d is related to other points .

(U} = (U}, Uy, Uysy, Uysa} = {wl,wﬁl’.wN.w};)}.



Sop]{Us} + [Spa|{Ua}t = 0
[Sao]{Us} + [Saa]{Ua} — 2 ([Qus]{Us} + [Qua]{Uas}) =0

—

{Up} = —[Sew) " [Snal{ Ua}
—> ([Saa) — [Sav)[Svb) " [Sea]) {Ua}
— 7([Qaa] — [Qav)[Ses) ™ [Sba]){Ua} = 0

= ([s] - 2@){Ua} = 0

This Is a generalized eigenvalue equation.

47



By the procedure proposed here, one obtains the normalized critical
buckling axial load ) of the beam with various boundary conditions.
The calculated / is compared with analytic results in Table 2. Good
agreements were obtained. When more sampling points are employed,
Table 2 shows that the convergence rate is very rapid.

Table 2. Comparison of beam normalized critical buckling load
/. under various boundary conditions

48

N Pinned-Pinned Fixed-Fixed Fixed-Pinned
Analytic 9.869604 39.47842 20.19073
6 9.867287 40.44472 20.17477
7 9.869683 39.37706 20.18902
8 9.869631 39.48238 20.19110
9 9.869604 39.47825 20.19075
10 9.869604 39.47845 20.19072
11 9.869604 39.47842 20.19073
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530 4k 4 B K s 3 sl i S s

e
d*w P d*w - U

dx4_EIdx2:0 x C [0,L] = [0,1]

N+2

6 6

w( (x;)= Zaﬁ.ﬁuj — Z;E“%Uj —ﬂZI:E(Z)szj =0
' d= J=

=02

N
M=N+2=)n,=2+1+1+2=6
J=1

N=4
i=1,2,3.4



If 1=2

4 4 4 4 4 4
Eél)UI o Eéz)UZ i E§3)U3 o E§4)U4 = E2(5)U5 ir E.’EG)U6
(2) (2) (2) (2) (2) (2) -
~AEQU, + EQU, + EQU, + EQU, + EQU, + EQU, | =0

If 1=3
E U+ EpU, + ESU; + EJU, + EUs + E U

—ANEDU, + EQU, + EQU, + EQU, + EQU, + E§§>U6] =0

50
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d?_

(2) _ 7 |
Ey " d? h, (x;) a,=-1"1b,=+11¢;,, =0

11

h,(x) = (=x* +x)/,(x)
—  E =-14.6667

(x—x, (x=x;)(x-x,)

[ (x)=-
1 (x, —x,)(x, — x;)(x, — x,)
o _ d _ - _
Es =—hs(x) ay =+1 b, =-1 ¢y =0
dx~

ho(x) = (x> —x),(x)
(x—x )(x—x,)(x—x3)

(x, —x)(x, —x,)(x, —x3)

| —  EP=-2.00
l,(x) =

56



EQ = h,(x,) fu=— = e =
T odx’
h,(x)= (—x° + x)/ (x) —
I (x) = (x—x,)(x— .\'3)(3‘ - .\'4).
(%, =2, J(x; = x, )(x;, — x,)
d2
(2)
Eyi = 2 hs(x,)
dx
—

g (x) = (x* = )1, (x)

o7

EY =+14.6667



hy(x)=(=5.33x" +5.33x)/,(x)

IZ(X) = (x-xl)(x- x3)(x-x4)

(y = x)(xy = x3)(x, —xy)

h,(x) = (=5.33x% +5.33x)1,(x)




» d’
E? =2 (x,)
7 —  E® =-284443

h,(x)=(=5.33x% +5.33x)/,(x)

d:
(2) _
E44 _d_g h4(x4) (2)
\ ED = 853328

h,(x) =(-5.33x% +5.33x)/,(x)

d4
E.g.i’_‘) = dx4 h_’l(x_?)

= E;) =-224
h,(x) = (=x* +x)/,(x)
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o (x) = (% = )1, (x)
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d4
ES) = Fhs (xz)

E; =2048

EY =-1365.3

J —
hy(x) =(=5.33x% +5.33x)/, (x)
d4
E;) =—h,(x,)
24 dx4 - “~ :
h,(x)= (—5.33x% + 5.33x)/,(x)
I
4) _ .
E;, _Fhs(%) —

h,(x)=(=5.33x" +5.33x),(x)

EY =-13653



d4
dx4 h4 (x3)

(4) _
E34 -

h,(x)=(=5.33x +5.33x),(x)

E® =2048

5 d’
ED =——h,(x,
n =7 )

h,(x) = (—x" +x)(x)

EZ =0.50

i

dl
ESE) :—_7]7 Xy
26 dx_ 6( _)

h(x)=(x" = x),(x)
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E® =1.1667



y  d°
E;z- :dxz hz(xs)

h,(x) = (—x* +x)],(x)

— E;=-1.1667

o
Es(g) = Ehs (x;)

hy(x) = (3 =), ()

—

E® =-0.50

d?_
E®P =—_h,(x,
Q=)

h,(x)=(=5.33x% +5.33x)/,(x)
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—

ES =-28.4443



dZ

(2}
E:z4 _dxz h4(x3)

h,(x)=(=5.33x" +5.33x)/,(x)

— E{=213332

: d’
Es(g) = Fhs(xs)

hy(x)=(=5.33x" +5.33x)/,(x)

=

()

32

4

d;
dx’

Es(i) = h4(x3)

h,(x) = (=5.33x" +5.33x)/,(x)
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= EQ=-284443



d2

E; =—5h(x) a,=-73333 b =+83333 ¢ =1
dx 1
/71(.\‘) = (—7.3333.\'3 +8.3333J‘+1)/1(X) — E1(12) — _08 8889
(2) dz o : . il k) s
m= h(x;) a, =-7.3333 b, =+8.3333 ¢, =0
15 dxg % G |
hi(x) = (=7.3333x" +8.3333x)/,(x)

— E? =16.6667

,d?
E(_) =—.,h X
41 Tz 1( 4)

— E? =-8.6667
hy(x) =(=7.3333x" +8.3333x + 1)/, (x)



dZ

E? =—h(x,)
N 5% =  E® =-73.5556
hy(x) = (=7.3333x" +8.3333x)/,(x)
d4
(4) _
By =—ah(x,) —  E®=-17707

h(x)=(=7.3333x" +8.3333x+ 1)/,(x)

d4
E?(.g) = Fhs (x,)

v

= E® =832
hy(x) = (=7.3333x7 + 8.3333x)/,(x)
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d4
4
= ()

B =576

EP =-1514.7

—
h(x)=(~7.3333x" +8.3333x +1)/,(x)
d4
(4) _ .
E35 - dx4 hS(‘l'S) :>
h,(x) = (=7.3333x” +8.3333x)/,(x)
5 d
ng) =—h(x,)
ax-
—

h(x) =(=7.3333x" +8.3333x + )/, (x)
67

E{Y =16.3333



d2

2y _ ™

Eys =— 3 hs(xy) —  E® =-10.5556
hi(x) = (-7.3333x” +8.3333x)/, (x)
dz

E® =" _h(x

o dx? (%) —  E®=-11.8889
h(x) =(=7.3333x +8.3333x + 1)/, (x)

, d’
E3(§) = 2 hS (x3) 2
X — E? =17.6667
hy(x) = (—7.3333x7 +8.3333x)/,(x)
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(05 ) s sl o) e Ay pligh — Al (e Addlas oilgd a2
[Ses]  [Sea] | [ {Us}
[[Sdb] [de]] { {Ua} }
[ [o]  [0] {U} |
_"[[de} [QdeH{Ud}}‘O

0 ]
(- 98.8889 —14.6667 16.6667 —2.0000 85.3328 —28.4443]| |U,
—8.6667 2.00000 —73.5556 14.6667 —28.4443 85.3328 U,
_1770.7 —224.0000 832.000 —96.0000 2048.00 —13653| | U, >
| 576.000 96.0000 -1514.7 224.000  -1365.3 2048.00| |0
Us |

10.00000 0.00000 0.00000 0.00000 0.00000 0.00000

0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
4 16.3333 0.5 -10.5556 1.1667 —28.4443 21.3332
—11.8889 —1.1667 17.6667 —0.5 21.3332 -—28.4443

(§]

P —

-

=== ==
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— [Swl{Us} + [Soal{Ua} = 0

[Sav|{Us} + [Saa]{Ua} — 2 ([Qap]{Up} + [Qaa]{Ua}) =0

{Up} = —[Ses] ™ [Spal{ Ua}
([Saa) — [Sav)[Sew) " [Sea]) {Ua}

— 2([Qua] — [Qas][Ss) ™ [Seal){Ua} = 0
—> ([S| —4[Q){Us} =0

\

U

668.3061 -2170.1 1 —24.2525 14.1471 d 3 =
—2170.1 668.3061 14.1471 —24.2525 U
4

\ /
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THE END




